Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macrophage receptor for glucose-modified proteins

نویسندگان

  • Z Yang
  • Z Makita
  • Y Horii
  • S Brunelle
  • A Cerami
  • P Sehajpal
  • M Suthanthiran
  • H Vlassara
چکیده

Advanced glycosylation endproducts (AGEs), the glucose-derived adducts that form nonenzymatically and accumulate on tissue proteins, are implicated in many chronic complications associated with diabetes and aging. We have previously described a monocyte/macrophage surface receptor system thought to coordinate AGE protein removal and tissue remodeling, and purified a corresponding 90-kD AGE-binding protein from the murine RAW 264.7 cell line. To identify AGE-binding proteins in normal animals, the tissue distribution of 125I-AGE rat serum albumin taken up from the blood was determined in rats in vivo. These uptake studies demonstrated that the liver was a major site of AGE protein sequestration. Using a solid-phase assay system involving the immobilization of solubilized membrane proteins onto nitrocellulose to monitor binding activity, and several purification steps including affinity chromatography over an AGE bovine serum albumin matrix, two rat liver membrane proteins were isolated that specifically bound AGEs, one migrating at 60 kD (p60) and the other at 90 kD (p90) on SDS-PAGE. NH2-terminal sequence analysis revealed no significant homology between these two proteins nor to any molecules available in sequence databases. Flow cytometric analyses using avian antibodies to purified rat p60 and p90 demonstrated that both proteins are present on rat monocytes and macrophages. Competition studies revealed no crossreactivity between the two antisera; anti-p60 and anti-p90 antisera prevented AGE-protein binding to rat macrophages when added alone or in combination. These results indicate that rat liver contains at least two novel and distinct proteins that recognize AGE-modified macromolecules, although p90 may be related to the previously described 90-kD AGE receptor isolated from RAW 264.7 cells. The constitutive expression of AGE-binding proteins on rat monocytes and macrophages, and the sequestration of circulating AGE-modified proteins by the liver, provides further evidence in support of a role for these molecules in the normal removal of proteins marked as senescent by accumulated glucose-derived covalent addition products, or AGEs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells

Glucose can react nonenzymatically with amino groups of proteins to form covalent Amadori products. With time these adducts undergo further rearrangements to form irreversible advanced glycosylation endproducts (AGE), which accumulate with protein age. A specific AGE, 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI), has been identified on proteins in vivo. We have recently shown that a macroph...

متن کامل

Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy

Advanced glycosylation endproducts (AGEs) are derived from the nonenzymatic addition of glucose to proteins. AGEs have been found to accumulate on tissue proteins in patients with diabetes, and their accumulation is thought to play a role in the development of diabetic complications. The finding that macrophages and endothelial cells contain AGE-specific receptors led us to examine whether mesa...

متن کامل

Advanced glycosylation endproduct-specific receptors on human and rat T- lymphocytes mediate synthesis of interferon gamma: role in tissue remodeling

During normal aging and in chronic diabetes the excessive accumulation of reactive glucose-protein or glucose-lipid adducts known as advanced glycosylation endproducts (AGEs) has been shown to induce tissue dysfunction, in part through interaction with AGE-specific receptors on monocyte/macrophages and other cells. Recognizing that circulating lymphocytes trafficking through tissues interact wi...

متن کامل

High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules.

Proteins that have been modified by long-term exposure to glucose accumulate advanced glycosylation end products (AGE) as a function of protein age. In these studies, we have characterized the interaction of AGE-protein with mouse peritoneal macrophages, using AGE-modified bovine serum albumin (AGE-BSA, prepared by incubation with glucose) as a probe. AGE-BSA was specifically bound to cells at ...

متن کامل

Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells.

Long-term incubation of proteins with glucose leads to the formation of advanced glycation end products (AGE). Physiological aspects of the catabolism of non-enzymically glycated proteins were studied in vivo and in vitro. AGE-modified BSA (AGE-BSA) was a mixture of high-Mr (cross-linked), monomeric and low-Mr (fragmented) AGE-BSA. After intravenous administration in rat, all three fractions of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 174  شماره 

صفحات  -

تاریخ انتشار 1991